Scientist Have Detected Gravitational Waves (they say)

Started by Syt, February 11, 2016, 12:35:44 PM

Previous topic - Next topic

Syt

:w00t:

http://www.bbc.com/news/science-environment-35524440

QuoteGravitational waves from black holes detected

Scientists are claiming a stunning discovery in their quest to fully understand gravity.

They have observed the warping of space-time generated by the collision of two black holes more than a billion light-years from Earth.

The international team says the first detection of these gravitational waves will usher in a new era for astronomy.

It is the culmination of decades of searching and could ultimately offer a window on the Big Bang.

The research, by the Ligo Collaboration, has been accepted for publication in the journal Physical Review Letters.

The collaboration operates a number of labs around the world that fire lasers through long tunnels, trying to sense ripples in the fabric of space-time.

Expected signals are extremely subtle, and disturb the machines, known as interferometers, by just fractions of the width of an atom.

But the black hole merger was picked up by two widely separated LIGO facilities in the US.

"We have detected gravitational waves," David Reitze, executive director of the Ligo project, told journalists at a news conference in Washington DC.

"It's the first time the Universe has spoken to us through gravitational waves. Up until now, we've been deaf."

Prof Karsten Danzmann, from the Max Planck Institute for Gravitational Physics and Leibniz University in Hannover, Germany, is a European leader on the collaboration.

He said the detection was one of the most important developments in science since the discovery of the Higgs particle, and on a par with the determination of the structure of DNA.

"There is a Nobel Prize in it - there is no doubt," he told the BBC.

"It is the first ever direct detection of gravitational waves; it's the first ever direct detection of black holes and it is a confirmation of General Relativity because the property of these black holes agrees exactly with what Einstein predicted almost exactly 100 years ago."

Ripples in the fabric of space-time
- Gravitational waves are prediction of the Theory of General Relativity
- Their existence has been inferred by science but only now directly detected
- They are ripples in the fabric of space and time produced by violent events
- Accelerating masses will produce waves that propagate at the speed of light
- Detectable sources ought to include merging black holes and neutron stars
- LIGO fires lasers into long, L-shaped tunnels; the waves disturb the light
- Detecting the waves opens up the Universe to completely new investigations

That view was reinforced by Professor Stephen Hawking, who is an expert on black holes. Speaking exclusively to BBC News he said he believed that the detection marked a moment in scientific history.

"Gravitational waves provide a completely new way at looking at the Universe. The ability to detect them has the potential to revolutionise astronomy. This discovery is the first detection of a black hole binary system and the first observation of black holes merging," he said.

"Apart from testing (Albert Einstein's theory of) General Relativity, we could hope to see black holes through the history of the Universe. We may even see relics of the very early Universe during the Big Bang at some of the most extreme energies possible."

Team member Prof Gabriela González, Louisiana State University said: "We have discovered gravitational waves from the merger of black holes. It's been a very long road, but this is just the beginning.

"Now that we have the detectors to see these systems, now that we know binary black holes are out there, we'll begin listening to the Universe. "

The Ligo laser interferometers in Hanford, in Washington, and Livingstone, in Louisiana, were only recently refurbished and had just come back online when they sensed the signal from the collision. This occurred at 10.51 GMT on 14 September last year.

On a graph, the data looks like a symmetrical, wiggly line that gradually increases in height and then suddenly fades away.

"We found a beautiful signature from of the merger of two black holes and it agrees exactly - fantastically - with the numerical solutions to Einstein equations... it looked too beautiful to be true," said Prof Danzmann.

Prof Sheila Rowan, who is one of the lead UK researchers involved in the project, said that the first detection of gravitational waves was just the start of a "terrifically exciting" journey.

"The fact that we are sitting here on Earth feeling the actual fabric of the Universe stretch and compress slightly due to the merger of black holes that occurred just over a billion years ago - I think that's phenomenal. It's amazing that when we first turned on our detectors, the Universe was ready and waiting to say 'hello'," the Glasgow University scientist told the BBC.

Being able to detect gravitational waves enables astronomers finally to probe what they call "dark Universe" - the majority part of the cosmos that is invisible to the light telescopes in use today.

Perfect probe

Not only will they be able to investigate black holes and strange objects known as neutron stars (giant suns that have collapsed to the size of cities), they should also be able to "look" much deeper into the Universe - and thus farther back in time. It may even be possible eventually to sense the moment of the Big Bang.

"Gravitational waves go through everything. They are hardly affected by what they pass through, and that means that they are perfect messengers," said Prof Bernard Schutz, from Cardiff University, UK.

"The information carried on the gravitational wave is exactly the same as when the system sent it out; and that is unusual in astronomy. We can't see light from whole regions of our own galaxy because of the dust that is in the way, and we can't see the early part of the Big Bang because the Universe was opaque to light earlier than a certain time.

"With gravitational waves, we do expect eventually to see the Big Bang itself," he told the BBC.

In addition, the study of gravitational waves may ultimately help scientists in their quest to solve some of the biggest problems in physics, such as the unification of forces, linking quantum theory with gravity.

At the moment, the General Relativity describes the cosmos on the largest scales tremendously well, but it is to quantum ideas that we resort when talking about the smallest interactions. Being able to study places in the Universe where gravity is extreme, such as at black holes, may open a path to new, more complete thinking on these issues.



- A laser is fed into the machine and its beam is split along two paths
- The separate paths bounce back and forth between damped mirrors
- Eventually, the two light parts are recombined and sent to a detector
- Gravitational waves passing through the lab should disturb the set-up
- Theory holds they should very subtly stretch and squeeze its space
- This ought to show itself as a change in the lengths of the light arms (green)
- The photodetector captures this signal in the recombined beam

Scientists have sought experimental evidence for gravitational waves for more than 40 years.

Einstein himself actually thought a detection might be beyond the reach of technology.

His theory of General Relativity suggests that objects such as stars and planets can warp space around them - in the same way that a billiard ball creates a dip when placed on a thin, stretched, rubber sheet.

Gravity is a consequence of that distortion - objects will be attracted to the warped space in the same way that a pea will fall in to the dip created by the billiard ball.

Inspirational moment

Einstein predicted that if the gravity in an area was changed suddenly - by an exploding star, say - waves of gravitational energy would ripple across the Universe at light-speed, stretching and squeezing space as they travelled.

Although a fantastically small effect, modern technology has now risen to the challenge.

Much of the R&D work for the Washington and Louisiana machines was done at Europe's smaller GEO600 interferometer in Hannover.

"I think it's phenomenal to be able to build an instrument capable of measuring [gravitational waves]," said Prof Rowan.

"It is hugely exciting for a whole generation of young people coming along, because these kinds of observations and this real pushing back of the frontiers is really what inspires a lot of young people to get into science and engineering."
I am, somehow, less interested in the weight and convolutions of Einstein's brain than in the near certainty that people of equal talent have lived and died in cotton fields and sweatshops.
—Stephen Jay Gould

Proud owner of 42 Zoupa Points.

Martinus

QuoteThey have observed the warping of space-time generated by the collision of two black holes more than a billion light-years from Earth.

Old news.  :rolleyes:

Zanza


Martinus

Quote from: Zanza on February 11, 2016, 12:39:43 PM
So, when does the hoverboard come on the market?

I want my jetpack first. Then they can go back to shit like that.

Legbiter

Posted using 100% recycled electrons.

celedhring

Executive summary? What does this discovery mean? Will I end up in the wall behind my library if I go near one of those?

Zanza

Quote from: celedhring on February 11, 2016, 02:20:37 PM
Executive summary? What does this discovery mean? Will I end up in the wall behind my library if I go near one of those?
We were able to detect something that is like 100km across and one billion light years away. We would never have been able to do that with our current telescopes that rely on electromagnetic waves. So it opens up a whole new way to observe the universe.

And it confirms Albert Einstein's theories from a hundred years ago, so we have a bit more confirmation that our idea about how the universe works is correct.

Syt

Quote from: celedhring on February 11, 2016, 02:20:37 PM
Executive summary? What does this discovery mean? Will I end up in the wall behind my library if I go near one of those?

Basically, Einstein said there should be gravitational waves. In the 70s, IIRC, scientists managed to indirectly prove their existence. Now they have for the first time directly measured them.

One upshot could be setting us down a path of gravitational telescopes that could chart the vast amount (i.e the majority) of matter in space that's not emitting radiation that's picked up by traditional telescopes that work with the electromagnetic spectrum.
I am, somehow, less interested in the weight and convolutions of Einstein's brain than in the near certainty that people of equal talent have lived and died in cotton fields and sweatshops.
—Stephen Jay Gould

Proud owner of 42 Zoupa Points.

The Brain

Women want me. Men want to be with me.

grumbler

Quote from: Martinus on February 11, 2016, 12:37:33 PM
QuoteThey have observed the warping of space-time generated by the collision of two black holes more than a billion light-years from Earth.

Old news.  :rolleyes:

Yeah, we heard about it when it happened.  It's now been published, so not even the BBC can ignore it.
The future is all around us, waiting, in moments of transition, to be born in moments of revelation. No one knows the shape of that future or where it will take us. We know only that it is always born in pain.   -G'Kar

Bayraktar!

grumbler

Quote from: Legbiter on February 11, 2016, 12:44:16 PM

Tim may have to kill you for this Syt.  -_-

I think Tim was scooped about this a moth and a half ago.
The future is all around us, waiting, in moments of transition, to be born in moments of revelation. No one knows the shape of that future or where it will take us. We know only that it is always born in pain.   -G'Kar

Bayraktar!

PDH

Quote from: grumbler on February 11, 2016, 04:13:09 PM
Quote from: Legbiter on February 11, 2016, 12:44:16 PM

Tim may have to kill you for this Syt.  -_-

I think Tim was scooped about this a moth and a half ago.

Half a moth, half a moth, half a moth onward!
I have come to believe that the whole world is an enigma, a harmless enigma that is made terrible by our own mad attempt to interpret it as though it had an underlying truth.
-Umberto Eco

-------
"I'm pretty sure my level of depression has nothing to do with how much of a fucking asshole you are."

-CdM

Eddie Teach

Quote from: The Brain on February 11, 2016, 04:04:42 PM
How do you eliminate interference from katmai?

Exile him to Alaska, where he can't reach us.
To sleep, perchance to dream. But in that sleep of death, what dreams may come?

Ed Anger

Stay Alive...Let the Man Drive

grumbler

Quote from: PDH on February 11, 2016, 08:10:29 PM
Quote from: grumbler on February 11, 2016, 04:13:09 PM
Quote from: Legbiter on February 11, 2016, 12:44:16 PM

Tim may have to kill you for this Syt.  -_-

I think Tim was scooped about this a moth and a half ago.

Half a moth, half a moth, half a moth onward!

Exactly.  Three halves of a moth.
The future is all around us, waiting, in moments of transition, to be born in moments of revelation. No one knows the shape of that future or where it will take us. We know only that it is always born in pain.   -G'Kar

Bayraktar!